Как работает теория вероятности в ставках на спорт?
Что такое теория вероятности
По определению теория вероятности – это раздел математической науки, в котором изучаются закономерности случайных событий и величин, операции над ними и основные их свойства. С помощью этой теории можно произвести точную оценку вероятности разных событий по отношению к другим.
В ставках на спорт теория вероятности (или тервер) выступает базисом для построения букмекерского бизнеса. В коэффициенты, на которые игроки делают ставки, закладывается маржа (комиссия букмекера), что позволяет получить доход вне зависимости от того, как сложится игра. Сами котировки определяются именно на основе вероятности наступления конкретного события. Неверный их расчет приведет к серьезным убыткам.
Читайте также:
- Выбрать лучшего букмекера для ставок на спорт
- Прогнозы на сегодня от профессионалов
- Как выбрать букмекерскую контору – советы «РБ»
- Бездепозитные бонусы букмекерских контор
- Как не проиграть первую ставку – 6 советов новичку
Подходы определения теории
Для определения вероятности существуют 3 подхода:
- Субъективный
- Байесовский метод
- Эмпирический
В первом случае вероятность определяется с помощью наблюдателей, анализа ситуации или общественного мнения. В оценку закладывается максимальное количество возможных факторов.
Метод Байеса предполагает определение вероятности заранее. Можно привести пример с монеткой – при подбрасывании вероятность выпадения решки или орла равна 50%. Согласно этому методу, орел и решка будут выпадать по очереди, что на практике маловероятно.
Эмпирический метод имеет специальную формулу для вычисления вероятности: P = N / X, где N – количество подходящих исходов, X – число всех возможных вариантов.
В ставках это выглядит так: «Реал» обыграл «Барселону» 7 раз из последних 10 на своем поле. Значит, вероятность выигрыша у себя на стадионе в следующей игре будет равна 70%.
Оцениваем вероятность события
Вернемся к марже. Вероятность определяется согласно формуле P = 1 / K, где К – коэффициент события. Для расчета маржи есть своя формула:
M = (S – 1) * 100%, где S – сумма вероятностей.
Простой пример: в игре между «Баварией» и дортмундской «Боруссией» коэффициенты расставлены таким образом: 1,70 на победу «Баварии», 4,30 на ничью и 5,20 на победу «Боруссии». Вычислим вероятность:
- Победа «Баварии»: 1/1,70 = 0,588
- Ничья: 1/4,30 = 0,232
- Победа «Боруссии»: 1/5,20 = 0,192
Складываем получившиеся значения: 0,588 + 0,232 + 0,192 = 1,012. Маржа будет равна 1,20%, поскольку (1,012 – 1) * 100 = 1,20.
Определение ценности ставки
Коэффициент как цифра показывает мнение аналитиков букмекерских контор.
В оценку заложен человеческий фактор, следовательно, возможна недооценка. Эти ставки в беттинге получили определение валуйных.
Валуйность определяется по формуле K * P > 1. Здесь К – коэффициент, P – оценка вероятности. Представим следующую ситуацию – играют «Зенит» и «Спартак». После анализа игры было решено, что вероятность ничьей составляет 30%. Букмекер определил коэффициент ничьей 4,50. Оценим ставку – 4,50 * 0,30 = 1,35. Это больше единицы (причем намного), что говорит о валуйности события.
Ценность математического анализа
Математика популярна не только у тех, кто определяет коэффициенты, но и у тех, кто по ним ставит. Профессиональные капперы при помощи математического анализа могут определять разные показатели статистики:
- Желтые карточки
- Угловые
- Удары в створ
- Количество нарушений правил
- Форма конкретного спортсмена или команды
Поскольку оценка вероятности в определении верности выставленных коэффициентов может быть неверной, профессиональные игроки этим пользуются и в случаях возникновения валуйности ставки превращают эти ситуации в способ для заработка.
Понятие дисперсии
В математике дисперсией называется разброс случайной величины по отношению к ее математическому ожиданию. С ее помощью есть возможность определить, будет ли у команды серия поражений или, напротив, белая полоса.
Оттолкнемся от позитива – возьмем случай с победами. Вероятность серии побед можно определить по формуле D = (1 – 1/K) в степени S. S – количество побед подряд, K – коэффициент.
Разберем баскетбольный матч. В игре между «Лос-Анджелес Лейкерс» и «Сакраменто Кингз» на победу «Лейкерс» дают коэффициент 1,30. Вероятность победы составляет 1 / 1,30 = 0,769. Поэтому «Лейкерс» должны выиграть 7-8 игр из 10. Если судить по реалиям, то допустим вариант с тремя поражениями подряд от «Лейкерс», но в игре на дистанции результаты будут сходны с математическим ожиданием. Вероятность
3 побед подряд составит: (1 – 1/1,30)^3 = 0,012.
Стратегии игры по науке
С игрой по теории вероятности хорошо сочетаются финансовые стратегии ставок. Пример – классический флэт. Игроки фиксируют номинал пари и при средней проходимости 60-70% можно получить прибыль на дистанции при котировках 1,85+.
Существуют и математические модели. Яркий пример – догон (метод Мартингейла). При каждой неудачной ставке беттор удваивает номинал пари, при этом коэффициенты событий должны быть не менее 2. В реальности модель хороша в случае большого банка и при начале игры с 0,5%-1% от общего размера банкролла.
Заключение
Теория вероятности изучает закономерности событий и величин. В ставках на спорт при применении математического анализа она позволит игрокам достигнуть стабилизации прибыли. Бетторы могут использовать дополнительные математические и финансовые стратегии, чтобы иметь плюс на дистанции.
Теория вероятности может быть использована в ставках на любые игровые дисциплины – от футбола до керлинга. Для игроков важно делать точные расчеты и производить верную оценку вероятности, чтобы понимать, где мог ошибиться букмекер, и сыграть на этом.
Ответы на частые вопросы
Кто придумал теорию вероятности?
Основателями теории вероятности в математике являются Пьер Ферма и Блез Паскаль.
Как играть по теории вероятности?
Игрокам необходимо проводить самостоятельный анализ матчей, в ходе которого сравнивать собственную оценку с коэффициентами букмекеров. При наличии большой разницы в расчетах можно делать ставки на недооцененный в линии БК вариант. Также можно применять стратегии ставок, основанные на теории вероятности.
В чем заключаются основные понятия теории?
Закон вероятности формируется на описанных выше понятиях дисперсии, математического ожидания и определения вероятности и ценности.
Спасибо за Вашу помощь!
Мы ценим Вашу бдительность!
Уведомления о новых публикациях этого автора будут приходить на электронный адрес, указанный Вами при регистрации на "РБ"
Уведомления о новых прогнозах этого эксперта будут приходить на электронный адрес, указанный Вами при регистрации на "РБ"
Это значит что вы больше не будете получать уведомления о новых публикациях этого автора на ваш электронный адрес.
Это значит что вы больше не будете получать уведомления о новых прогнозах этого эксперта на ваш электронный адрес.